
A Bidding System For StarCraft II Planning Agents

Abstract—We propose an auction system as a way to achieve
consensus between agents covering the high-level planning tasks
of the Real-Time Strategy game StarCraft II. We will specify the
problem domain and how we mapped the task of planning in
StarCraft II on a multi-agent system. From here, we will pin
down how user tasks are represented and how the agents receive
information of the game world, including the introduction of a
blackboard to synchronize information on dynamic events, such
as attacks. Finally, the auction system takes care of distributing
tasks originating from a global utility system to the different
agents, where each agent can value its capability to fulfill the
goals and side-constraints of a task on its own.

Keywords—RTS, StarCraft, StarCraft II, Reasoning, Bidding
Systems, Utility Systems

I. INTRODUCTION
The Real-Time Strategy (RTS) game StarCraft is a popular

research platform [1]. RTS games offer an array of interesting
challenges for developing player-level Artificial Intelligence
(AI), such as tactical and strategic reasoning, opponent
modelling and planning in uncertain, dynamic and adversarial
environments [2]. Many of these challenges are, in particular
high-level planning, are still active research topics [3]. Our
research focuses on StarCrafts successor, StarCraft II. While
different in some details, the game play and game mechanics
are comparable and research done based on StarCraft II should
transfer to StarCraft and potentially other, similar RTS games.

We present work on a non-cheating StarCraft II player-
level AI, called Eunoia. The bot is a multi-agent system and
solves the reasoning tasks via a loosely coupled array of
Command Agents, which each supervise a group of Profession
Agents taking care of the actual unit control. This paper will
present how an Auction System - which bears similarities to
Utility Systems - is put into use to distribute tasks issued by
Command Agents to their respective Profession Agents. We
will further explain how a blackboard-like approach is used to
gather information from the StarCraft II game and distill it into
AI world knowledge. We will also take a look on the data
format and constraints that accompany tasks in such a player-
level AI.

II. PROBLEM DOMAIN
The state space in StarCraft II is huge and cannot be broken

down into exact atomic tasks like in board games such as
chess. Sensory information in the game can give a bot a perfect
information scenario but the innumerable actions make it
unfeasible trying to check all possibilities. As our bot
implementation targets developing a non-cheating bot for
StarCraft II, one has to reduce the number of sensors to a
human-like minimum. This naturally means taking the rules of
the game, such as Fog of War, into account. Yet, further,
human awareness and retentiveness should be imitated. For
these reasons the world state representation is a mix between

different established techniques. StarCraft II provides an easy
to access event system and its data module allows for retrieval
of almost all unit-specific values. Responsibility is to choose
the right information and store it purposefully.

The prototype described in this paper only covers planning
for all economical functions, such as expanding, and the first
military production building of the Terran race, the Barracks.
The architecture can be expanded to cover the other two
buildings, Factory and Starport, but for the sake of simplicity,
we opted for a simpler prototype. The Barracks, with its
attachments and research buildings, already offer a selection of
different units with very different game mechanics.

III. TASKS
Tasks are the smallest building blocks of behaviors and

need to be based on the facts in the memory system. Tasks for
the system are mostly low-level with only few abstract
commands. Abstract commands have to be concretized to get
atomic tasks for the agent to execute. This may result in many
tasks executed in superhumanly speeds. Another reason to
choose atomic tasks is the need to foresee their impact to the
game state. The more complex a task the harder it is to discern
the influence. The following tasks were chosen. They are
sufficient for a simple agent playing a whole game. Additional
tasks can easily be added, due to the loose system architecture.

x Train SCV

x Train Marine

x Train Marauder

x Train Reaper

x Build Supply Depot

x Build Barracks

x Build Engineering Bay

x Expand

x Defend

x Attack

IV. WORLD-STATE REPRESENTATION
In order to make decisions an agent needs to be able to

capture the current state of the world around them. A player
needs to react an attacks or issue attacks themselves depending
on military strength. For Eunoia several methods for sensing
the world and storing information about the world are
combined. The information is divided into static knowledge,
which does not change once the game has started and dynamic
knowledge, variable bits of information changing as the game
progresses.

342

9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), 15-17 December, 2015, Kathmandu, Nepal.

SKIMA 2015 | NEPAL

Most of the static knowledge is already stored in StarCraft
II. Player locations, map topography such as nav-meshes and
possible expansion points are stored in the map files. Unit data
and other domain knowledge is stored in the unit data files and
is easily accessible through interface functions. Remaining
static knowledge is simply stored in global variables once the
game has started. Those being for example races and player
start locations.

For sensing dynamic knowledge sensors to capture in-game
events and extract relevant data are utilized. Besides sensors a
polling system, which gathers information at each AI loop
cycle is established. This way the dynamic knowledge can
periodically be updated and a consistent world view to base
decisions on is present. Following are some of the dynamic
information bits being captured.

x Current resource count

x Allied unit count of specific unit type

x Allied expansions count

x Enemy unit count of encountered unit types

x Enemy base count

Most dynamic knowledge is stored in a simple database
with predefined keys for easy access. For arbitrary data and
occasionally occurring events a blackboard architecture is used.

A. Sensors
So-called Triggers from the Trigger Editor. These sensors

react to predefined events from the game by executing certain
actions. Sensors expose information which is associated with
the event through variables. Due to this sensors can be reused
for multiple purposes. Once a sensor is triggered the associated
information for preconditions can be checked and action-
sequences executed accordingly. Some in-game events used
are:

x Unit training progress started / completed to assign
units to attack waves.

x Unit construction progress Completed for agent
spawning.

x Unit takes damage to react to attacks and defend
accordingly.

x Unit dies to react to structure destruction.

V. DATA CONSIDERATIONS
Comparing and contrasting concrete values can be difficult.

Some variables in StarCraft II have no predefined maximum
value and variables may rely on one another. Dave Mark wrote
about such issues in his book “Behavioral mathematics for
game AI” [4]. He writes about issues stemming from using
measurable factors to decide on rational and irrational
behavior.

Gathering the data in a computer game is usually very
simple and one of the main reasons researchers choose games
for AI research. Most world state variables are linked to

concrete values, which can be accessed. But numerical,
concrete values are not always useful for decision-making. The
perception of a value may change throughout the game. It is,
for example, difficult to decide whether a player has maximum
minerals or the strongest military force. These considerations
are depending on in-game factors like game-time, or how
strong the military force of an opponent is.

For these reasons artificial limits on many of the variables
had to be imposed and relative weights for related values had to
be given. Eunoia features two parallel world views to handle
most of the calculations. On the one hand there is a simple
numeric world state, where every value is stored as retrieved.
No capping and no weights are applied there.

On the other hand there is a normalized and capped world
view (see fig. 1). All values are normalized between 0 and 1.
Variables with discretionary or infinite maximum values are
capped at values founded on StarCraft II domain knowledge or
expert knowledge. Both views are used for either calculating
utility of tasks or issuing bids.

Figure 1: Worker Loop gathering information from

Sensors, WorldState and Normalized WorldState Variables.

343

9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), 15-17 December, 2015, Kathmandu, Nepal.

SKIMA 2015 | NEPAL

VI. BLACKBOARD ARCHITECTURE
Aside from regularly updated dynamic knowledge and

constant information in the form of static knowledge
sometimes random information has to be stored. Blackboard
Architectures [5, 6] allow several individual and separate
systems (called experts) to access information in a centralized
space. Experts can post new data onto the blackboard, simply
read or even erase data from the blackboard. Usually an arbiter
is introduced to avoid access issues. It controls which expert is
allowed to access the board based on their insistence, a value
displaying how important it is for an expert to have access. The
arbiter could be left out because only a few systems access the
information on the board and neither of them can get into
conflicts. Sensors write information onto the board and agents
read and remove this information once they are permitted to
execute a task. Amplifying the classical architecture a basic
garbage collection mechanism is introduced. All entries on the
blackboard have a time-to-live (ttl) counter. Every loop this
counter will be decreased for all entries. Once an entry’s ttl-
counter reaches zero, the entry will be removed. Special entries
can have an infinite time-to-life and will stay on the board until
they are treated with or the game ends, whichever comes first.

If, for example, a sensor registers an attack at the base a
new blackboard entry for said attack will be created. The entry
will consist of the location of the attacked unit, the number of
attacking units and the number of loops this information should
be valid. If then a defend-task has the highest utility an agent
will read the information and use it to execute the task.

Cutting down unnecessary features and having decided on
the world view of the agent leads to a controllable
environment. With keeping all vital features, the results can
later be projected onto a bigger scope if necessary. The next
step is to translate the goals and first findings into a functioning
agent architecture.

VII. AUCTION SYSTEM AND TASK TREATMENT
Tasks function as atomic actions to be executed by their

respective agents. Whenever a task is created by the utility
system, it has to be delegated to an appropriate agent if
possible. The system adapts in size and shape to the current
game state. This is why a delegation system, which works with
this level of flexibility and versatility, is needed. Kolp et al. [7,
8] researched common Multi Agent Systems and scored the
different approaches against different requirements. According
to their paper, bidding-architectures sufficiently inherit the
quality of adaptivity and modularity. They involve
competitivity with participating agents bidding for items. An
auctioneer creates and organizes auctions. It displays the item
to be auctioned and accepts bids from all agents. The
auctioneer is then responsible for closing the auction and
awarding the item to the winning agent.

This architecture enables connecting the two hierarchical
levels loosely and issue task delegation easily (see fig. 2).
Bidding systems work regardless of the number of agents. The
more agents the higher the chance of finding a perfectly fitting
agent and gaining maximum utility. On the other hand items
are only awarded if any bid is issued at all. This way lower

level agents are able to veto on items if they seem inappropriate
or unworthy. If that happens the next task in the queue of high
utility tasks is fetched.

Bidding architectures can be interpreted as reversed utility
systems. Instead of scoring available actions and assigning the
winning action to an agent, one item is scored by different
agents and only executed if profitable. No centralized logic is
doing the decision-making but rather small agents assess their
local environment and internal state and bid accordingly.

Kolp et al. [8] mention only one additional architecture
which performs adaptive and rather modular. Joint venture
style functions by delegating authority to a joint management
actor which coordinates tasks and resources. Each principal
partner can manage itself locally and interact with other
partners directly. However, strategic operations and decisions
on a global scale are carried out by the joint management actor.
For this system it would mean that task delegation would be
decided by this centralized actor. This actor had to decide on an
abstract worldview with heavy organizational overhead if the
system changes. The connection between local actor and the
centralized joint management actor is inflexible and would
limit the organic structure. This is why the auction system is
used.

Figure 2: Profession Agent bidding in Eunoia. A Command

Agent issues a Profession Auction - for example building a
new unit - and each Profession Agent issues a bid, depending
on static and dynamic knowledge of the game (enemy start
location, current build queue, distance to base …)

344

9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), 15-17 December, 2015, Kathmandu, Nepal.

SKIMA 2015 | NEPAL

A. Auctions
Bidding architecture in Eunoia are used to distribute tasks

to command and profession agents. The flow of the procedure
is depicted in fig. 3. Command and profession agents share no
tasks, so two different auctions are held. On command
auctions, only command agents bid and there is no clear
auctioneer. The auction is started by a third party auctioneer
which is spawned especially for that case and handles the
bidding and task delegation. After the auction the auctioneer is
destroyed. For profession auctions the parenting command
agent functions as the auctioneer and only descending
profession agents are allowed to bid.

Auction bidding is where the logic component in Eunoia is
located. It is the part where most of the reasoning is happening
and where the biggest potential for future projects lays. The
greatest benefit is that while bidding the agents only need to
reason about their immediate surrounding and internal state.
No strong level of abstraction is needed as much of the world
view is unnecessary due to the limited reach of the agent
calculating the bid. Knowledge for the bot is still centralized
and any agent can access any information of the world state if
necessary. Otherwise the low level agents would not be able to
come to rational results when compared to centralized systems.

Figure 3: Task Treatment in Eunoia.

For Eunoia the bidding logic is a two-step process. An
agent evaluates its agent preconditions, which reflect the
internal state. This could for example be the existence of a
special building-attachment, which accelerates training of
units. Some of those internal preconditions can prevent any bid
at all. For example, if the agent is not able to execute the task at
all, because it is lacking a special building-attachment.
Preconditions are stored as numerical variables attached to
each agent, comparable to symbols from Jeff Orkin’s GOAP
approach [9]. Agent preconditions are as followed:

x Queue Spots ϵ N (0-5), stores the number of available
training spots.

x Energy ϵ N (0-200), is a special resource for
Command Centers and other casters.

x Is Orbital Command ϵ {0,1}, translates into a boolean
value for a Command Center attachment.

x Number of Profession Units ϵ N, stores the number of
profession units a command center commands.

x Can Train ϵ {0,1}, translates into a boolean value to
distinguish training from research-facilities.

x Can Research ϵ {0,1}, translates into a boolean value
to distinguish training from research-facilities.

x Has Reactor ϵ {0,1}, translates into a boolean value
for an attachment allowing simultaneous training of
two units for production buildings.

x Has Techlab ϵ {0,1}, translates into a boolean value
for an attachment allowing training of special units
and research of unit enhancements for production
buildings.

After preconditions checks the agent calculates a bid for the
task at hand. For each task a particular formula is utilized.
These pre-baked formulas are comparable to utility functions
and inherit the same dynamic. Every agent uses the same
formulas to calculate the bid. This modular system results in
agent bids only differentiating due to internal symbol or state
differences. Spatial and temporal reasoning is done based on
these differences. Agents could plan ahead and disregard
preconditions because they would be true in a foreseeable
future. For example the building attachment, needed to train a
certain unit, is already being constructed. After the auctioneer
has gathered all bids the winning agent will be commanded to
execute the task.

B. Task Execution
Winning agents should execute the task immediately after

the auction. While it is technically and conceptually possible to
withhold execution for internal planning, this would alter the
current world state and change future decision-making.
Withholding the execution could cause the same task being
picked for execution next, because the bot decides that the
problem at hand has not been dealt with. In Eunoia all tasks are
executed immediately upon delegation (see fig. 4).

Agents will gather all information necessary to execute the
tasks via the centralized world state database, or from

345

9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), 15-17 December, 2015, Kathmandu, Nepal.

SKIMA 2015 | NEPAL

information bits stored on the blackboard. Defend tasks, for
example, need a position to send the units to. Once a message
has been retrieved from the blackboard, it has to be invalidated
there to prevent multiple defense-actions from using the same
information. World state variable do not need to be changed, as
they will be refreshed continuously and before the next task-
execution.

Figure 4: Task Execution in Eunoia.

VIII. CONCLUSION
We presented how Command Agents and Profession

Agents work together via an Auction System to distribute tasks
among them. To execute tasks, world knowledge and agent
communication had to be solved, which was done via an
abstract world-space representation achieved through a sensory
layer and a blackboard to store information on dynamic events
such as attacks. We explained how all these systems interact to
form a player-level reasoning system for StarCraft II.

Further evaluation will focus on two central aspects of
player-level AIs in RTS games: Effectivity and believability.
Effectivity is measured by a current test series which fields
Eunoia against the AI routines with which StarCraft II is
shipped. The study is currently underway, but preliminary
results indicate that Eunoia is capable to beat even more
difficult AI opponents (difficulty level 5/7 shows good win
rates for Eunoia).

Yet, playing a game effectively does not necessarily mean
that the AI plays in a natural, human-like way. Further
evaluation will therefore target believability, in the form of
pseudo-Turing tests, where human test participants encounter
an opponent, of which they don’t know if it’s Eunoia or a
human player. After a game round, they will state whether they
believe to have faced an AI or a human.

REFERENCES
[1] Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., &

Preuss, M. (2013). A survey of real-time strategy game ai research and
competition in starcraft. Computational Intelligence and AI in Games,
IEEE Transactions on, 5(4), 293-311.

[2] Weber, B. G., Mateas, M., & Jhala, A. (2011, November). Building
Human-Level AI for Real-Time Strategy Games. In AAAI Fall
Symposium: Advances in Cognitive Systems (Vol. 11, p. 01).

[3] Yannakakis, G. N. (2012, May). Game AI revisited. In Proceedings of
the 9th conference on Computing Frontiers (pp. 285-292). ACM.

[4] Mark, D. (2009). Behavioral mathematics for game AI. Boston, MA;
Singapore, Course Technology Cengage Learning.

[5] Millington, I., & Funge, J. (2012). Artificial intelligence for games. CRC
Press.

[6] Downie, R. B. D. I. M., & Blumberg, Y. I. B. (2001). Creature smarts:
The art and architecture of a virtual brain.

[7] Kolp, M., Castro, J., & Mylopoulos, J. (2001, May). A social
organization perspective on software architectures. In Proc. of the 1st
Int. Workshop From Software Requirements to Architectures. STRAW
(Vol. 1, pp. 5-12).

[8] Carbonell J. G. et al. (2002), eds.: Revised papers: Seattle, WA, USA,
August 1 - 3, 2001. Springer. Page 128 ff.

[9] Orkin, Jeff. "Symbolic representation of game world state: Toward real-
time planning in games." Proceedings of the AAAI Workshop on
Challenges in Game Artificial Intelligence. Vol. 5. 2004.

346

9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), 15-17 December, 2015, Kathmandu, Nepal.

SKIMA 2015 | NEPAL

